Решение задачи Марковский цикл с Меньшиков
Без пояснения   Просмотров: 76
Ограниченный алгоритм Маркова состоит из последовательности предложений
s1s2...sN -> d1d2...dN,
где si и di - символы из алфавита A, B, C. Подстрока s1s2...sN называется левой частью, а d1d2...dN - правой частью предложения.
Алгоритм выполняется над исходной текстовой строкой, состоящей из прописных латинских букв A, B, C, следующим образом: перебираются все предложения, начиная с первого. Если левая часть предложения входит в текстовую строку, то самое левое вхождение заменяется правой частью этого предложения, и поиск вновь начинается с первого предложения. Если ни одно предложение не может быть применено, алгоритм останавливается.
При выполнении алгоритма возможны два результата: либо остановка, либо бесконечный цикл с определенным периодом. По данной строке и набору предложений алгоритма Маркова определить количество "ациклических" (выполненных до начала цикла) шагов и длину самого цикла. Если алгоритм останавливается, то длина цикла считается нулевой, а все выполненные шаги - ациклическими.
s1s2...sN -> d1d2...dN,
где si и di - символы из алфавита A, B, C. Подстрока s1s2...sN называется левой частью, а d1d2...dN - правой частью предложения.
Алгоритм выполняется над исходной текстовой строкой, состоящей из прописных латинских букв A, B, C, следующим образом: перебираются все предложения, начиная с первого. Если левая часть предложения входит в текстовую строку, то самое левое вхождение заменяется правой частью этого предложения, и поиск вновь начинается с первого предложения. Если ни одно предложение не может быть применено, алгоритм останавливается.
При выполнении алгоритма возможны два результата: либо остановка, либо бесконечный цикл с определенным периодом. По данной строке и набору предложений алгоритма Маркова определить количество "ациклических" (выполненных до начала цикла) шагов и длину самого цикла. Если алгоритм останавливается, то длина цикла считается нулевой, а все выполненные шаги - ациклическими.